Product Catalog

WPG Series Potentiostat/Galvanostat

5th Edition

BATT

Corrosion Material Testing Sensor/Bioelectrochemistry Battery/Fuel Cell Supercapacitor/Solar Cell

Fuel Cell

Potentiostat/Galvanostat WPG Series

Potentiostat/Galvanostat

- Economical price
- 16bit ADC. DAC
- For long term experiment
- Accurate control & measurement
- User friendly software
- Free software upgrade
- Local area network(LAN) for communication
- Current ranges: 8 ranges for WPG100ex, 6 ranges for WPG100S & WPG100H8, 4 ranges for WPG100H12, & 3 or 1 current ranges for WPG100HP Series
- Importing/exporting data file

The WPG series are well suited for general electrochemical experiments including battery testing, corrosion measurements and electrochemical research applications.

For Stable and Accurate Target

- 4 Kelvin probe type true Potentiostat/Galvanostat circuit • With 16bit ADC, DAC, this system provides 0.0015% f.s.
- high resolution in control and data acquisition.
- Multiple current ranges(auto/manual selection)
- WPG100ex: 8 ranges
- WPG100S, WPG100H8: 6 ranges
- WPG100H12: 4 ranges
- WPG100HP: 3 or 1 range depending on system
- User specification is available from low current to high current
- Temperature measurement input: (standard) K-type thermocouple (option)
- Auxiliary voltage measurement(standard)-Aux V cable (option)
- Shield cell cable to protect EMI noise
- Automatic firmware upgrade
- LAN communication network
- This system can be used for battery cycler.

• Safety Limit & Fail Check Functions

- To protect hardware, this system stops the experiment automatically when it meets or exceeds the hardware specification or user defined safety limit.
- User defined safety condition setting: User can input safety level depending on chemical properties of reactants in test cell.
- Unique "Fail check" function: To protect the system and cell itself, the experiment will be stopped automatically when the measured value is different from control value due to battery failure or wrong cell connection, etc.
- e.g. Control value: 1Amp, Measured value: 500mA Then the potentiostatl will stop automatically.
- Automatic cell connection check: Before experiment, if the cell voltage value is over the range of setting value, program gives the warning message for the operator to check the cell connection.
- If operator does press stop button by mistake, confirmation message box appears.
- If main program is down by unstable operating system, independent server program keeps the experiment (control & data acquisition) without dead time.

Cell kits

Flat Cell Kit

Plate Test Cell

- Plate Test Cell
- Pt Plate Counter Electrode - active area(Pt plate) : 1, 4, 5cm²

 Universal Electrode Holder - electrode and glass vial are not included.

• Battery Jigs - Single universal jig - Single pouch cell jig

Single Universal Jig

Single Pouch Cell Jig

• Easy calibration with verification function

Potentiostat/Galvanostat WPG Series

Software (Smart Interface)

- 32bit/64bit OS environment
- TCP/IP communication

- Max. 200 steps Max. 10 cutoff(vertex) condition Max. 300,000 data point memory on control board
- Virtual control panel
- Various real time plots & universal axis graphs
- Data backup function
- WYSIWYG graphics
- User friendly software

Virtual Control Panel

- BCO(button click operation): User can do any task just by

clicking the button. No Menu Selection.
Easy assignment of cycle test condition file
It displays real time graphics(V vs. I, V & I vs. time, V vs. logl etc.) to fit its own techniques. This can be selected by graphic short cut icon.

- Status bar displays the potentiostat status.
- Various task functions: run, stop, suspend, moving step, etc. Spying the contents of test program which were assigned to potentiostat
- Experiment parameters can be saved or loaded on the virtual control panel.
- On experiment running, users can analysis data or other tasking simultaneously.
- Real time strip chart display

• User can nominate folder for saving data. • Value of Interest(VOI) display function

Elapsed Time	Voltage(V)	Current(A)	Power(W)	Auxiliary(V)	Temperature(°C)
00:00:29	34.8m	33.2u	1.2u	180.1m	0.0
Various safet (function (Cafet (limit setting atc)					

/arious safety function (Safety limit setting etc)

Schedule Editor

- One stop test condition creation/modification
- Parameter mixed input system
- Max. 200 of test steps
- Control parameters are
 Constant voltage
- Constant current
- Constant power
- Constant load

- Voltage scanning
 Conditioning potential
- Conditioning current
- Rest
- CstepV (Staircase Voltage Sweep)
 CstepI (Staircase Current Sweep)
- C<u>C/Ċ</u>V
- Step flow are defined by next step, loop and cycle
- Cut-off conditions can be set by:

step time, voltage, current, dV/dt, dI/dt, cycle time, loop time, capacity, -dV, Whr, temperature, Aux voltage,, dT/dt,

Cut o	ff Cor	dition Li	st							_
No	Tur	n Step	Туре		Cond	. Value		it A	And	_Ту
1	Nex	d Step	Step Time	~	N	30.00				
				^						
			Volta	ge						
		Curre	nt							
			-dV							
			dV/d	It						_
			dI/d	t	~					
Step	No	Step Na	me	Туре		Value (Sca	n Rate)	Range	/Loop	т

• Data sampling condition by each step: time, dV/dt, dI/dt, dT/dt, dV2/dt

- And/Or logic for cut-off condition setting

Pre-defined Techniques

• This system provides pre-defined technique menu and universal test procedure menu for user to make their own experiment procedure with cycle, loop and/or logic.

• Predefined technique menu

Electroanalytical Techniques

- Cyclic voltammetry
- Linear sweep voltammetry
- Chrono-amperometryChrono-coulometry
- Chrono-potentiometry
- Corrosion Measurement
 - Tafel plot
 - Potentiodynamic
 Potentiostatic

 - Galvanostatic
 - Cyclic polarization
 - Ecorr vs. time
 - Linear polarization resistance

Potentiostat/Galvanostat WPG Series

Energy Test

- CC/CV (Lithium battery) test menu
- CC/CC (NiCd(NiMH) battery) test menu
- Steady state CV
- Pstat IV curve
- Gstat IV curve
 EVS (Electrochemical voltage spectroscopy) test
- GITT (Galvanostatic intermittent titration technique) test
- PITT (Potentiostatic intermittent titration technique) test

Real Time Data Monitor

• Displayed test data: status, running time, step number, cycle number, step time, current range, current, voltage, capacity, power, energy, Aux V, Calc V, temp, cycle file name, data file name, and file size.

• Graphics

- Multiple plot format
- General graph
- Cycle graph

×	General Graph			Cycle Graph	
		- C.C. Second - S	> 🕷 🖬 📓 📾 🔍 🕯	2, X 5 🖯 🛶 🗖 🗉 🖄 🖾 🖄 👘 🖄	
Ĩ		- Marina - Malain - M	X+ Cycle No. + Y1+ Ch Q Grant Ch Q Grant Ch Q	• V2 Doh Q • V2 None • V3 None • 🕵	
	107 C	-009 -009 -009	Deh Q Accumulate Q Coulomb Eff. Coulomb Eff. On 11th Ch With Och With Accumulate With		- 10.000 - 5.000
2		-100 \$ 2 -2000	Accumulate while the program of the temporal sector of tempora sector sector of tempor		- 8.000
L	- / / / /	-40% -40% -40%	Max V O'i Vivig Oh Vivig Och Vivig Dh Vivig Vivig Vivig Accomuter Q-QD Accomuter Q-QD Cryle No.		- 5000
	anner anner anner	2.000 a	8 5000 -		- 5000 500
			4000 -		= 4000

General graph format

Cycle graph format

General Function of Graph

- Multi-parameters
- Plot overlay: max. 20 plot
- Universal graphics: any combination of X,Y1,Y2,Y3,Y4 axis parameters
 Automatic updating plot with reloading button for running
- experiment data
- Automatic/Manual scale and polarity selection for each axis

- Cross-hair pointer by mouse click/arrow key displays coordinate values on graph
- Mouse zooming
- Density, specific value display

- Copy to clipboard function to use in other application software
- Grid on/off and dot/line selection
 ASCII file conversion or Excel file conversion of graph data only

- Parameter change without reloading the data file
- Data set On/Off: Data can be visible or invisible by selecting/
- deselecting the data set. • Rest step data hidden function
- Advanced graph setting

Voltage vs. | charging-discharging capacity | graph

• Tools

- Data Editor
 - General data report Cycle data report
 - Re Technique Contr File name C/ProgramBata/WonAlfedit/ Text line 2014-13-09 17:50:52 Data count 7471 User Meno step count 7 Contraction Contr -2.001%-3 39336+0 00000+0 -1.9998-3 39326+0 00000+0 -1.9998-3 38231+0 00000+0 -1.9998-3 38231+0 00000+0 -1.9998-3 3930-0 00000+0 -1.9998-3 39321+0 00000+0 -1.9998-3 38271+0 00000+0 -1.9998-3 38271+0 00000+0 000 000 000 000 000 000 000 000000170 000000295 000000445 000000455 000000455 000001155 000001555 800030.170 800030.295 800030.445 800030.658 800030.858 800031.135 800031.538 -7.85395e-3 -1 -7.85395e-3 -1 -7.84578e-8 -1 -7.85555e-3 -1 -7.85555e-3 -1 -7.85555e-3 -1 -7.85555e-3 -1 -7.85555e-3 -1 -7.85555e-3 -1 0.000e+0 0.000e+0 0.000e+0 0.000e+0 0.0000e+0 0.0000e+0

* Data editing

* Data filtering

Data Conversion

- Multiple data conversion(ASCII, Excel)

Data file splitter by cycle number

- Calibration

Jser can calibra ata backup	ate the potentios
Data Backup C	Configuration ×
Path	
Source Folder :	
C:\Zive Data\Smart Interface\J	Experiments\Data
Destination Folder :	
C:\Users\user\Documents	
Task Interval 1 + hou Data Option	
Only Today's Data	Type Image: WRD Files Image: WRD Files Image: WRD Files

Start Stop

• Split data file

Independent Data Analysis Software

The WPG data format can be used for independent data analysis software IVMAN™ at free of charge. IVMAN™ software package consists of

- IVMAN software
- IVMAN differential analysis software
- IVMAN photo voltaic cell analysis.
- IVMAN Tafel analysisIVMAN extractor
- IVMAN peak find module

IVMAN DA[™] Battery Test Data Analysis Software

- Battery test data analysis
- Electrochemical voltage spectroscopy (dQ/dV vs. V)

- Voltage vs. Capacity analysis (V vs. Q)
 Cycle graph (Q vs. cycle)
 Differential voltage graph(dV/dQ vs. Q)

Cycle graph

😻 IVMAN™ Photovoltaic Cell Analysis

Automatic analysis of parameters

- open circuit voltage, open circuit current, max. power, efficiency photo induced current, diode quality factor, series resistance, etc.

🧕 IVMAN™ Tafel Analysis

Simple Tafel calculation

IVMAN™ Main Software

- Electrochemical analysis software
- Ideal for DC corrosion data analysis and electro-analytical
- data analysis
 Initial guessing function on Tafel analysis
 Automatic Tafel fitting
- Polarization resistance fitting
- 3D graph
- Find peak function
 Interpolation, differentiation, integration, etc.
 Reporting function

- Extracting data by cycle number or step
 Exporting ASCII file

Peak Find Module

• Independent peak finding software

WPG100ex Standard Type

Application

- Corrosion test
 Sensor application
 General electrochemistry
- Battery/Super capacitor/Fuel cell test
- Material test

The WPG100ex is an economical research grade potentiostat system which is designed for general electrochemistry, corrosion, battery, etc. It has a power of ±1A and low current ranges, down to 100nA full scale as standard. And customized specification is available upon request. k is designed with a local area network(LAN) for The WPG100 The WPG100ex is designed wi communication with a computer.

Temperature input and auxiliary voltage input are included.

Specifications

Control voltage range	±10V (standard)
Compliance voltage	±12V (standard)
Control current range	1A, 8 ranges (standard)
LED	Run: 1ea, Mode: 2ea, Irange: 8ea
Input impedance	10 ¹² Ohm
Cell connection	6 probe type, alligator clip cables
Voltage accuracy	±0.02% f.s.
Current accuracy	±0.02% at 10uA to 1A range ±0.1% at 1uA, 100nA range
Voltage Control/Measurement	
Full scale ranges (within 40 Watt)	±10V (standard) ±20V or ±40V (optional)
Resolution (16 Bits)	0.3mV(standard)
Current Control/Measurement	
Full scale ranges	±10V@1A (standard) ±20V@1A, ±40V@500mA (optional)
Resolution	16 bit(0.0015% f.s)
Power	40Watt
Sampling time	1msec
Communication	TCP/IP
Size	350x328x84mm (WxDxH)
All appecifications are a bigst to shange without	notico

All specifications are subject to change without notice.

WPG100S Potentiostat/Galvanostat

Application

- General electrochemical application
- Corrosion/electroplating
 Electrosynthesis/Electrolysis
- Battery test/Supercapacitor test
- Fuel cell test
- Solar cell test

The system hardware is based on WPG series potentiostat/galvanostat and designed for general electrochemical application such as corrosion, battery test, photoelectrochemistry, and fuel cell, electroplating etc with 6 current ranges. Temperature input and auxiliary voltage input are included.

Maximum power is 400Watt and the customize specification is available within this power. The WPG100S is designed with a local area network(LAN) for communication with a computer. Bipolar model's max voltage is +/-40Volts.

Specifications

Control current range	6 ranges
LED	Run: 1ea, Mode: 2ea, I range: 6ea
Input impedance	10 ¹² Ohm
Cell connection	4 probe type, alligator clip cables
Voltage accuracy	±0.05% f.s. (<10V)
Current accuracy	±0.05% f.s.
Voltage Control/Measurement	
Full scale ranges	Refer to power configuration map
Resolution (16 bits)	0.0015% f.s
Current Control/Measurement	
Full scale ranges	Max. f.s under 400Watt Bipolar voltage range 1) Max 26A @ \pm 5V (C5V*) 2) Max 5A @ \pm 5V (C10V*) 3) Max 5A @ \pm 10V (C12V*) 4) Max 16A @ \pm 10V (C10V*) 5) Max 13A @ \pm 10V (C15V*) 6) Max 8A @ \pm 20V (C21V*) 7) Max 5A @ \pm 20V (C21V*) 8) Max 1A @ \pm 40V (C43V*) 9) Max 4A @ \pm 40V (C43V*) * Compliance voltage Unipolar voltage range 1) Max 37A @ -1V to 5V 2) Max 26A @ -1V to 10V 3) Max 1AA @ \pm 1V to 21V 4) Max 10A @ -1V to 31V 5) Max 7A @ -1V to 43V
Resolution	16 bit (0.0015% f.s)
Communication	TCP/IP

447x188x491.2mm (WxDxH)

All specifications are subject to change without notice.

Sampling time

Size

WPG100HP High Power Potentiostat/Galvanostat

WPG100H8/H12 Power Potentiostat/Galvanostat

Application

- High power application / Electrosynthesis/Electrolysis
 Battery test/Supercapacitor test / Fuel cell test
 Solar cell test / Pilot line application

The system hardware is based on WPG series potentiostat/galvanostat and designed for high power application with 6 or 4 current ranges. Maximum power is 800Watt(WPG100H8) or 1200Watt(WPG100H12). The customize specification is available within this power. Temperature input and auxiliary voltage input are included

Specifications

Control current range	WPG100H8: 6 ranges WPG100H12: 4 ranges
LED	Run: 1ea, Mode: 2ea Irange: 3ea
Input impedance	10 ¹² Ohm
Cell connection	4 probe type, alligator clip cables
Voltage accuracy	±0.05% f.s. (<10V)
Current accuracy	±0.1% f.s.

Refer to Power cor	figuration Map
--------------------	----------------

Resolution (16 bits)	0.0015% f.s
Power Configuration Eul scale ranges	Max. f.s under 800Watt (H8) Bipolar voltage range 1) Max 52A @ ± 5V (C5V*) 2) Max 32A @ ±10V (C10V*) 3) Max 25A @ ±10V (C10V*) 4) Max 16A @ ± 20V(C21V*) 5) Max 8A @ ± 40V(C43V*) * Compliance Voltage Unipolar voltage range 1) Max 60A @ -1V to 5V 2) Max 50A @ -1V to 5V 2) Max 25A @ -1V to 10V 3) Max 26A @ -1V to 21V 4) Max 26A @ -1V to 31V 5) Max 20A @ -1V to 31V 6) Max 15A @ -1V to 43V
Full scale ranges	Max. f.s under 1200Watt (H12) Bipolar voltage range 1) Max 61A @ ± 5V(C5V*) 2) Max 50A @ ±10V(C10V*) 3) Max 40A @ ±10V(C10V*) 4) Max 25A @ ± 20V(C21V*) 5) Max 12A @ ± 40V(C43V*) * Compliance voltage Unipolar voltage range 1) Max 78A @ -1V to 10V 2) Max 43A @ -1V to 21V 3) Max 39A @ -1V to 21V 4) Max 30A @ -1V to 21V 5) Max 23A @ -1V to 31V
Communication	TCP/IP
Sampling time	1msec
Emergency switch	Located on the front panel
Size	H8: 447.1x241x505.2mm (WxDxH) H12: 464.1x285.4x626mm (WxDxH)

Application

- High power application
- Electrosynthesis/Electrolysis Battery test/Supercapacitor test
 Fuel cell test
 Solar cell test

- Pilot line application

The system hardware is based on WPG series potentiostat/galvanostat and designed for high power application such as battery pack, solar module, and fuel cell stack, electroplating etc with 1 or 3 current ranges depending on system. Maximum power is 4kWatt and the customize specification is available within this power. The WPG100HP is designed with a local area network(LAN) for communication with a computer. Bipolar model's max voltage is +/-45Volts. Temperature input and auxiliary voltage input are included. U model (WPG100HPU) is unipolar model (positive voltage only) for

Energy research. Max voltage is 0 to 90V available.

Specifications

Control current range	1 or 3 ranges depending on power
LED	Run: 1ea, Mode: 2ea
nput impedance	10 ¹² Ohm
Cell connection	4 probe type, alligator clip cables
Voltage accuracy	±0.1% f.s.
Current accuracy	±0.1% f.s.
/oltage Control/Measurement	
Full scale ranges	Refer to power configuration ma
Resolution (16 bits)	0.0015% f.s
Full scale ranges	Maximum current depending on voltage range 1. voltage bipolar 1) Max 200A @ ±5V (C7V*) 2) Max 150A @ ±10V (C10V*) 3) Max 76A @ ±10V (C10V*) 4) Max 76A @ ±20V (C21V*) 5) Max 46A @ ±20V (C21V*) 6) Max 46A @ ±20V (C31V*) 7) Max 38A @ ±40V (C43V*) * Compliance voltage 2. voltage unipolar 1) Max 180A @ -2V-+10V 2) Max 140A @ -2V-+10V 2) Max 140A @ -2V-+21V 3) Max 95A @ -2V-+31V 4) Max 76A @ -1V-+43V 5) Max 42A @ -1V-+45V 6) Max 46A @ -1V-+77V
Resolution	16 bit (0.0015% f.s)
Communication	TCP/IP
Sampling time	1msec
	Located on the front panel

All specifications are subject to change without notice.

WonATech Co., Ltd. 7, Neunganmal 1-gil, Seocho-gu, Seoul, 06801, Korea Phone: +82-2-578-6516 Fax: +82-576-2635 e-mail: sales@wonatech.com website: www.wonatech.com Local Distributor

