

Bi-Potentiostat/Dual Channel Electrochemical Workstation ZIVE BP2C

> Including Internal FRA 10Volts/2Amp

> > Won ATech

For BioElectrochemistry FET Sensor Hydrodynamic Test Corrosion Material Testing Battery/Fuel Cell Super Capacitor/Solar Cell The ZIVE BP2C, a dual channel potentiostat/galvanostat/FRA, is to support dual-working-electrode cell with one reference and one counter electrode configuration(bi-potentiostat) for sample characterization. Each channel can conduct DC and impedance test simultaneously and/or independently. The ZIVE BP2C can be setup to run 2-electrode, 3-electrode, or 4-electrode measurements with a simple setup change.

Each channel is designed under FPGA(Field Programmable Gate Array) and DSP(Digital Signal Processor) control with high speed capability.

DAC Control

: Two sets of high speed 16bit DAC(50MHz) for offset & scanning & one set of 16bit DAC(1MHz) for auxiliary analog output control

ADC Reading

: Two sets of 16 bit 500kHz ADC for reading voltage/current and 4 channel 16bit 250kHz ADCs for auxiliary data input such as temperature, auxiliary voltage etc. It provides high frequency EIS, fast pulse techniques and high speed sampling time.

The **ZIVE BP2C's** each channel is equipped with a frequency response analyzer(FRA) as standard and it provides high performance impedance measurements over the frequency range 10uHz to 1MHz. ZRA(zero resistance ammeter) function can measure max. 2 Amp in galvanic corrosion technique. The system is supplied with four(4) advanced software packages, which are catagorized by application fields. With this advanced software packages, user can widen ZIVE BP2C's flexibility

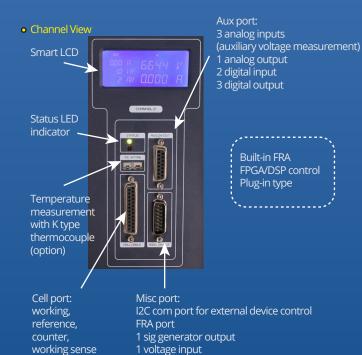
System Features

- Versatile high quality dual channel potentiostat/galvanostat/impedance analyzer
- Bi-potentiostat
 - two fully independent channels
- dual working electrodes with one reference and one counter electrode configuration available
- FRA function to control an external electronic load or 3rd party potentiostat/galvanostat is available as standard
- 14 EIS techniques capability including multisine
- Current interrupt IR measurement IR compensation(dynamic, positive feedback)
- Bipolar pulse capability
- Voltage pulse or current pulse charge/discharge test(GSM,CDMA etc.), sine wave function for ripple simulation in battery test package and pulse plating available
- High speed data sampling time per channel
 2usec or 3usec depending on data point number
- Fast sweep mode(5000V/sec with 10mV data sampling)
- 3 measurement/control voltage ranges & 11 measurement/control current ranges
- Internal 542,000 data point storage and continuing experiment regardless of PC failure
- Full software packages are included as standard
 ElS test software package(EIS)
 Electrochemical analysis software package(EAS)
 Corrosion test software package(COR)
- Battery/energy test software package(BAT)
- Multichannel configuration available
- Free software upgrade

Hardware Features

- Compact design
- Wide current ranges(2A to 200pA) for various applications (200pA with gain)
- Independent operation by FPGA with DSP per channel
- Impedance measurement capability on each channel with built-in FRA
- Smart LCD display for each channel
- Temperature measurement as standard
- Simultaneous 3 auxiliary voltage measurements
- 1 auxiliary analog output

• Front View


- 3 digital outputs & 2 digital inputs
- External booster(ZB series) interface
- External multiplexer(MUX series) interface for a sequential measurements on multiple electrochemical cells

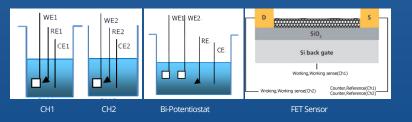
• Smart LCD Display

1 current input

Versatility

The ZIVE BP2C's system comes with additional three analog inputs (auxiliary voltage input) and 1 analog output along with 3 digital outputs and 2 digital inputs, and one temperature input for K type thermocouple. It will help users expand the usage of the instrument.

For example,


- 1. User can measure the voltage between working and reference electrode and, by using 2 additional analog inputs(auxiliary voltage input), user can also measure the voltage between reference and counter electrode and between working and counter electrode as well.
- 2. With analog output, the system can control rotating speed of the rotator, MFC flow rate etc. by ±10V full scale.
- 3. User can control on/off of max. 3 devices by DO etc.
- 4. This ZIVE BP2C can interface with an external booster(ZB series) for high current application.

Safety and Maintenance

- Even though the communication failure occurs between PC and ZIVE BP2C, the system continues its experiment on channel and saves the data into ZIVE memory up to 542,000 data point set. After the communication is restored, ZIVE will transfer saved data to PC automatically or user can transfer data when he/she wants. This function will be highly efficient for long time experiment.
- User can define a safety condition setting by inputting his/her own safety levels for voltage, current, temperature etc. If the measurement value exceeds this setting value, the system will automatically stop to protect the system and cell.
- 3. If the control value of voltage or current is different from measured value, the experiment will stop automatically to protect the cell.
- 4. Automatic calibration function is available for user calibration.
- 5. The system has its own hardware parameters and calibration data.
- 6. The channels feature plug-n-play setup for easy instrallation and removal.
- 7. The system is controlled from a PC via USB.

Application

The ZIVE BP2C, a dual channel electrochemical workstation is ideal for bio sensor research, FET sensor, permeation test etc. And it can be also used for fundamental research in electrochemistry, development and quality assurance of new sensors, corrosion/ coatings, electrode material, membrane, conducting polymer, evaluation power device research such as battery materials, fuel cells, super capacitors and solar cells.

Sensors

The ZIVE BP2C can be used for sensor research using with DNA chips or screen printed electrodes. System's minimum current range is 200pA(with gain). Cyclic voltammetry, Chronoamperometry and EIS measurement can be used for this application. FET sensor application can be supported too.

Corrosion

The system is suitable for measuring low corrosion rates and EIS test to evaluate corrosion. The ZRA function is supplied for galvanic corrosion measurement.

General Electrochemistry

The ZIVE BP2C is also suitable for the development of bio-research, electron transfer kinetic studies and electrochemical analysis of compounds at low trace levels, where multichannel DC and impedance analysis is beneficial in providing high throughput of results.

Batteries

The system is very well adapted for researches on the cycling behavior of battery. It provides various control modes for battery cycling. It can support EVS (electrochemical voltage spectroscopy)/GITT/PITT test. Fast pulse capability for GSM, CDMA test is included in battery test software package.

Pulse profile measurement function to check pulse shape is available. For ripple simulation test, sine wave charging/discharging is available.

- Fuel Cells

The **ZIVE BP2C** is ideal for characterizing the fuel cells and anodic/cathodic process mechanism at development and research grade. This system can be directly used for PEMFC, DMFC, and DEFC etc. The FRA can control an external electronic load for EIS measurement of fuel cell. I-V curve measurements in a full range of

available current(autorange option is active during the I-V scan in order to ensure measurement with continuously high resolution).

Super Capacitors

The **ZIVE BP2C** has fast potentiostat circuit with high speed data acquisition. This function is well applicable to super capacitor testing. Charging/discharging capability is used for this application.

Solar Cells

Solar cell development and production requires extensive material and device testing to improve efficiency and match individual cells for panel construction. The **ZIVE BP2C** is the best solution for photovoltaic cell characterization. With system's AI, AO, DI, and DO, the system can monitor other device's signal and also control them.

SM Main Software

The Smart Manager (SM) is to control ZIVE BP2C model and it provides user defined sequential test by using sequence file, technique menu and batch file. The batch file allows the users to do a serial test by combining sequence files and/or technique files.

The SM software is easy to use and electrochemical supports various experiments including functions of system control, schedule file editor, real time graph, analysis graph, user calibration, and data file treatment etc.

Basic Techniques

Basic techniques with standard functions

- 1) Potentiostatic
- 2) Galvanostatic
- 3) Double step potentiostatic
- 4) Double step galvanostatic
- 5) OCP measurement
- 6) Potential sweep
- 7) Current sweep
- 8) Cyclic voltammetry
- 9) Fast potential sweep
- 10) Potentiostatic Ru measurement
- 11) Galvanostatic Ru measurement

The above functions can be used sequentially by step control function.

Sequence editor

User can design his/her experiment procedure by using TASK sequential routine editor.

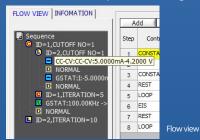
Control Task Parameters

Control Mode		
constant	GSTAT	constant current control
	Crate	constant Crate control
	PSTAT	constant voltage control
	POWER	constant power control
	LOAD	constant load control
	CC-CV	constant current constant voltage control
	Crate-CV	Crate constant voltage control
	CP-CV	constant power constant voltage control
	CL-CV	constant load constant voltage control
	ld	ld control
	ls	Is control
	OCP	OCP control
Step	GSTAT	current step control
	PSTAT	potential step control
Sweep	GSTAT	current sweep control
	FAST-G	fast current sweep control
	PSTAT	potential sweep control
	FAST-P	fast potential sweep control
EIS	GSTAT	galvanostatic EIS
	PSTAT	potentiostatic EIS
	OCP	OCP EIS
	PSUEDO	pseudo galvanostatic EIS
	HFR G	galvanostatic HFR
	HFR P	potentiostatic HFR
	MsineG	galvanostatic multisine EIS
	MsineP	potentiostatic multisine EIS
Rest		rest control
ZRA		ZRA control
Loop		loop control
Pulse	Vpulse	voltage pulse control
	Ipulse	current pulse control
	GSINE	current sine wave control
	PSINE	potential sine wave control

· Constant potential, current, C-rate, power, load, OCP

- Sweep potential, current
- Fast sweep potential, current
- Staircase potential, current
- CC-CV, CP-CV, CL-CV, Crate-CV control
- Id, Is control
- EIS control
- Pulse or sinewave control
- Rest(voltage monitoring only)
- Loop(cycle) control

Cut-off(Vertex) Condition


- Time(step, test, loop, cycle)
- Current, current density
- Voltage
- Capacity
- C-rate
- -dV
- |dV/dt|
- dl/dt
- Aux1
- Eoc

• time, |dI/dt|, |dV/dt|, |dT/dt|, |dA1/dt|, burst time

• Flow View

• User can see the sequence flow at a glance.

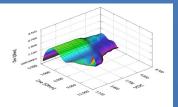
Batch function

User can design batch file including multiple technique files and/or sequence files. With this batch file, user can experiment several techniques/sequence in series automatically.

3	Batch schedule - Untitled.zbt 😁 🗕 🗆					- • ×				
Open	Open Batch File Save Save as App			Ар	ply 1	o Channel Add Insert[Dn] Insert[Up]	Delete	Close		
Index Setting Loop							Schedule File(s)			
Index	Enable	Count	Next		Loop End		Chg	File Name		
1		1	Next	-	Next	•		C:/Zive Data/sm/schedule/evs1.EVS		
2		1	Next	*	Next	•		C:/Zive Data/sm/schedule/cccv.CCV		
3		1	Next	*	Next	•		C:/Zive Data/sm/schedule/b1.CCV		
4		1	Next	•	Next	•		C:/Zive Data/sm/schedule/2.7v.IPE		
5		1	Next	-	Next	-		C:/Zive Data/sm/schedule/dd.IPE		
6		1	Next	-	Next	•		C:/Zive Data/sm/schedule/4.2V.IPE		
7	1	5	Index-1	-	Next	•		C:/Zive Data/sm/schedule/cccv1.CCV		
8		1	Next	*	Next	•		C:/Zive Data/sm/schedule/coin.CCV		

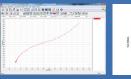
Condition-1

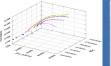
als: technicité Static Potentiostatic Galvanostatic Double step potentiostatic Double step galvanostatic OCP Measurement


Techniques

Smart Manager Advanced Software Package

For a wide range of application, advanced software packages for specific experimental techniques are available as standard.


EIS Software Package(EIS)

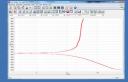

- 1. Potentiostatic EIS
- 2. Galvanostatic EIS
- 3. Pseudo galvanostatic EIS
- 4. OCP^(*1) EIS
- 5. Potentiodynamic PEIS
- 6. Galvanodynamic GEIS
- 7. Potentiodynamic HFR
- 8. Galvanodynamic HFR
- 9. Potentiostatic HFR monitor
- 10. Galvanostatic HFR monitor
- 11. Multisine potentiostatic EIS
- 12. Multisine galvanostatic EIS
- 13. Intermittent potentiostatic EIS
- 14. Intermittent galvanostatic EIS

Coin cell intermittent PE

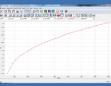
OCP EIS

Potentiodynamic PEIS

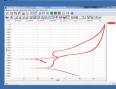
Electrochemical Analysis Software Package(EAS)


1. Step techniques

- CA(Chronoamperometry)
- CC(Chronocoulometry)
- CP(Chronopotentiometry)
- 2. Sweep techniques
 - LSV(Linear sweep voltammetry)
 - SDV(Sampled DC voltammetry)
- Fast CV
- Fast LSV
- 3. Pulsed techniques
 - DPV(Differential pulse voltammetry)
 - SWV(Square wave voltammetry)
- DPA(Diff. pulse amperometry)
- NPV(Normal pulsed voltammetry)
- RNPV(Reverse normal pulse voltammetry)
- DNPV(Differential normal pulse voltammetry)


Corrosion Software Package(COR)

- Corrosion technique supports IR compensation.
- 1. Tafel(Tafel experiment)
- 2. Rp(Polarization resistance)
- 3. Potentiodynamic
- 4. Galvanodynamic
- 5. Cyclic polarization
- 6. Ecorr vs. time
- 7. Galvanic corrosion
- 8. RpEc trend
- 9. Reactivation potential
- 10. Critical pitting potential
- 11. Potentiostatic ECN
- 12. Galvanostatic ECN
- 13. ZRA mode ECN



Tafel experiment

Rp (Polarization resistance)

CYPOL(Cyclic polarization resistance)

Battery Software Package(BAT)

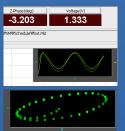
BAT software supports IR measurement.

- 1. Battery test techniques
- CC/CV test for cycle life test of lithium battery
- CC/CC test for cycle life test of NiCd or NiMH battery
- Discharging test
- EVS(Electrochemical voltage spectroscopy)
- Variable scan rate CV
- Potentiostatic IV curve
- Galvanostatic IV curve
- Steadystate CV
- GITT
- Pulse mode is available for GSM & CDMA profile.
- Pulse shape profile can be measured by user's demand.

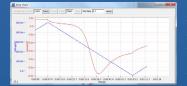
Each software package's upgrade will be provided at free of charge.

Control & Real Time Graph

Smart Manager provides 2 kinds of control & data acquisition with real time graph.


Mitchaver Weak Constituted	Distributed Visual Control Fault
OK 0800P Perc Teld Leff From Server Standord PEA CONTROL DATA FEA *	ON STATUS RUNDIG STEP THE AND
1 Plow Tesk Led Dror Running DeptCpt File Name Edit Dig Run Fiber Skip File Name File Skip 1 Plow Running Nove Nove 00010 21 best.det Test 20 10 10 10 10 10 10 10 10 10 10 10 10 10	1 500000 10000 2/1 00000 2m 18 443.76 34407 424.100 446.77 425.08 4.5100 4.6140m
2 C 06 800000 NOVE NOVE 00016 2/1 everen.005 R 20 8 10 80 5553,01.005 12,010	2 80000 0004 2/1 00004 20m 20m 0.000 3455 0.000 0.000 3550 1.4454m 1.1255m 1.2455m
* 1 F.K. Geby (C.Bedy / B.Bedy /	H 1 1 1 General DC Renter / DC Renter /
Dual channel control panel	Dual channel real time graph
Dual channel control parlet	Duai channei real ume graph
	1
[01-1] [01-2]	
99-	
10-	
77- 0	
0	
9 km	
Ano- 3	
3-	
31	
8	Dual channel data monitor
30- 30- 10- 10- 10- 10- 10- 10- 10- 10- 10- 1	
	Dual channel data monitor (EIS data/DC data selectable)
30- 11- 11- 11- 11- 11- 11- 11- 1	

User can control and monitor for specific channel in details and he/she can monitor data in VOI(value of interest) window and channel status in one window. Real time graph's X, Y axis format will be changed per technique automatically. It can be defined by user's demand per technique.



For experiment using sequence file or batch file, user can designate X,Y parameter on three different real time graph. The real time graph's format can be also selected. The channel number which you control can be changed in this window. Even if you control the channel in this mode, you can also monitor and control the same channel in this control panel at same time.

The real time graph and VOI will be changed depending on DC test or impedance test automatically. The virtual control panel always displays the graph for recent test result. For impedance measurement, wave monitor will be displayed on real time graph to check wave's quality. This monitor can be switched to Lissajous(I vs. E) plot.

Strip Chart

Strip chart recorder function provides real graph function independently. You can monitor 2 Y axis data such as voltage, current, AuxV1,2,3, temperature, power, capacity etc. in real time and can select channel(s) which you want to monitor. You can also set max. data point for showing strip chart length.

Simple Monitor

E Simple monitor	
Ch - 1 : RUNNING	Ch - 2 : RUNNING
Elapsed : 0:00:00	Elapsed : 0:00:00
Voltage : 3.4667 V	Voltage : 3:4652 V
Current : 5.0036uA	Current : -190.79nA
Capacity : 3.0090nAh	Capacity : 0.0000 Ah

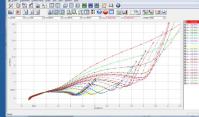
This display window is for monitor the major data values and channel status for multiple channel operation.

Graph 🗮 🔛 🜆

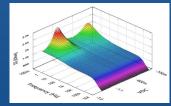
Smart Manager's graph function is to simplify the operation. There are 3 kinds of graph per each experiment. You can change X, Y1, Y2, Y3, Y4 axis parameter as you want. Each graph provides shortcut buttons. When you click these buttons, the format of the graph will be changed accordingly.

In DC and Cycle graph, whenever you click click or click to current such as current, capacity, energy, power, load, etc., are changed into calculated specific value or density value, respectively.

weight 🛛 😤 : value divided by active area

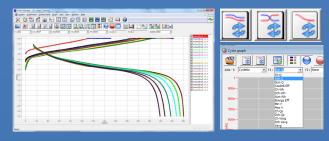

1) DC Graph

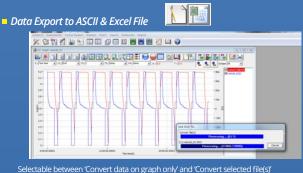
- For general data display
- 4 shortcut buttons: I vs. V, E vs. Logl, V, I vs. time, V vs. Q - Graph parameters: time, Eref, I, Eoc, Id, Aux1, Aux2, Aux3, temp,
- Logl, Load, ChQ, DchQ, ChQs, DchQs, Ch P, Dch P, Ch-Wh, Dch-Wh, Sum Wh, Sum Q, Sum |Q|, |Q|, Rp, dQ/dV



2) EIS Graph

- For EIS data display
- 3 shortcut buttons: Nyquist plot, Bode plot, Cs vs. frequency
 Graph parameters: Frequency, Zre, -Zim, Zmag, Zph, Y', Yimg,
 Y, |Y|, Yph, LogZ, LogY, Rs(R-C), Cs(R-C), Rp(R|C), Cp(R|C), Rs(R-L),
- Ls(R-L), Q(R-L), time, Vdc, Idc, temp, Aux(1,2,3)





3D Bode Plot by ZMAN Technique used: Potentiodynamic impedance measurement by using a corrosion cell

3) BAT Graph

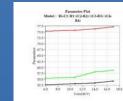
- For battery cycle data display
- 3 shortcut buttons: cycle capacity, cycle average, Log(cycle No) vs. depth of discharge plot.
- Graph parameters: cycle number, Ch Q, Dch Q, Sum Q, Coulomb Eff, Ch-Wh, Dch-Wh, Sum Wh, Energy Eff, MinV, MaxV, ChQs,
- DchQ, ChVavg, DchVavg, Vavg

Data Analysis Software

ZIVE data file can be used for analysis by using external IVMAN[™] software for DC analysis, IVMAN DA[™] software for battery data analysis, IVMAN PA[™] software for photo-voltaic cell data analysis and ZMAN[™] software for EIS data analysis without license.

ZMAN[™] EIS Data Analysis Software

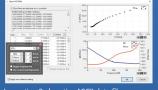
- Model simulation and fitting
- 2D- and 3D-Bode- and Nyquist plots
- Automatic equivalent circuit model search function
- Project concept to handle multiple EIS data analysis
- Parameter plot from fitted elements value
- Compatible with data format from Zahner, Gamry, Ametek etc. (License code is needed.)
- Various weighting algorithm
- Model library and user model
- KK plot
- Batch fitting for project data
- Impedance parameter simulation
- Interpolate bad data
- Black-Nichols plot
- 3D graph setting option
- Improved model editor
- Application model library for automatic searching
- Parameter simulation of model
- Genetic algorithm option for initial guessing
- Automatic initial guessing
- Trace movie function on fitting


- Free for ZIVE's data format(*.seo, *.wis) analysis (No license code required.)
- Circle fitting
- Data editing available (insert, delete, edit)
- Add/subtract element parameters • Add/subtract model parameters
- Impedance, Z in polar, admittance, Y in Polar, modulus, M in polar,
- dielectric constant, E in polar. data display
- Empty cell capacitance calculation
- Find file function
- Data replacement by formula function
- Cursor data display
- Model finding result automatic sorting by Chi square value

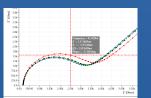
2.64

24 N. 3.44

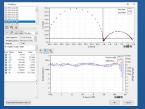
- R, C R, L R, Q preview & graphic
- ZHIT function
- Mott-Schottky analysis
- Donor density vs. Vfb graph
- C vs. voltage graph

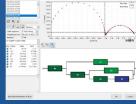


10 K


10 10

Parameter plot

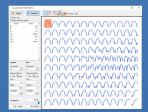



Importing 3rd parties ASCII data file

Cursor data display

Data replacement by formula function

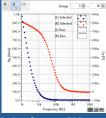
1 m


Fitting display


Category Model Teals

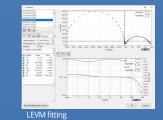
Category Model Tools

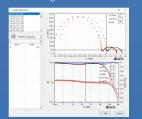
Automatic model searching

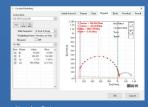

Parameter simulation

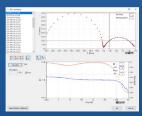
Finding data file menu

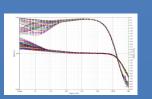
2D Nyquist plot

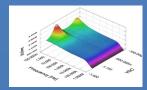



Rp,Cp vs frequency (R|C)

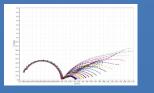

Donor density vs. Vfb graph and analysis


Element add/subtraction

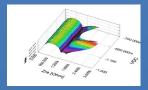

Circular fitting



Partial Plant Model
 X
 Supple geometric information is required to calculate empty
 al calculate empty
 calculate empty



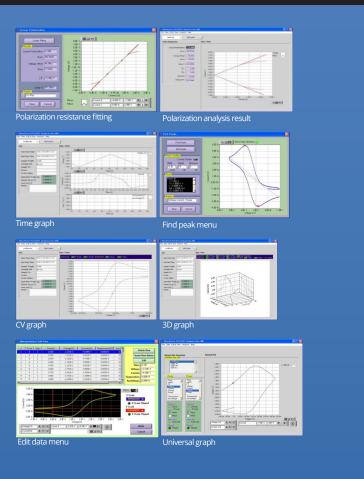
KK consistency



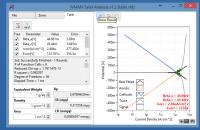
Bode overlay & 3D plots

Nyquist overlay & 3D plots

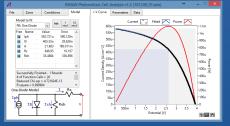
C/R-V graph


IVMAN™ DC Data Analysis Software

- IVMAN[™] software package consists of
- IVMAN software
- IVMAN utilities
- IVMAN main software
- IVMAN differential analysis software
- IVMAN photo voltaic cell analysis.
- IVMAN Tafel analysis
- IVMAN extractor
- IVMAN peak find module


™ Main Software

- Ideal for DC corrosion data analysis and electro-analytical data analysis
- Initial guessing function on Tafel analysis
- Polarization resistance fitting
- 3D graph
- Find peak function
- Interpolation, differentiation, integration etc.
- Reporting function

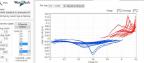


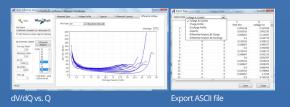
Simple Tafel calculation

IVMAN™ Photovoltaic Cell Analysis

• Automatic analysis of parameters

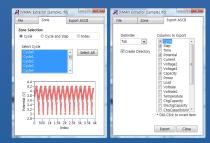
: open circuit voltage, open circuit current, max. power, efficiency photo induced current, diode quality factor, series resistance, etc.

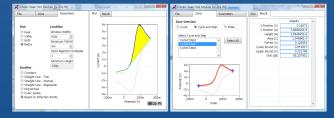

IVMAN DA™ Battery Test Data Analysis Software


- Battery test data analysis
- Electrochemical voltage spectroscopy (dQ/dV vs. V)
 Voltage vs. Capacity analysis (V vs. Q)

- Cycle graph (Q vs. cycle)Differential voltage graph(dV/dQ vs. Q)

i i i i i i i i i i i i i i




IVMAN EX™ Extractor

- Extracting data by cycle number or step
- Exporting ASCII file

IVMAN PF[™] Peak Find Module

• Independent peak finding software

Specification

Main System		
PC communication	USB2.0 high speed	
Line voltage	100~240VAC, 50/60Hz, 1Amp	
Max. channel number	2 independent channels per unit	
Max. output power	24Watt per channel	
LCD display	2ea	
Size/weight	209X270X378mm(WxHxD) / 9.25kg	

System	
Cell cable	1 meter shielded type(standard)
	working, reference, counter,
	working sense
Control	DSP with FPGA
DAC	2x16bit DAC(50MHz) for bias & scan
	1X16bit DAC(1MHz) for analog output
Data acquisition	2x16bit ADCs(500kHz) for voltage, current
ADC	1x16bit ADCs(250kHz) for auxiliary voltage
	and temperature reading
Calibration	Automatic
Filter selection	4ea(5Hz, 1kHz, 500kHz, 5MHz)
Scan rate	0~200V/sec in common mode
	0~5000V/sec in fast mode
LED indicator	Busy, Run
Internal data memory	542,000 points
LCD display	DC & EIS mode automatically

Power Amplifier(CE)		
Power	24Watt (12V@2A)	
Compliance voltage	±12V	
Max. current	±2A	
Control speed selection	8ea	
Bandwidth	2MHz	
Slew rate	10V/usec	

Potentiostat Mode (voltage control)	
Voltage control	
Control voltage range	±10V, ±1V, ±100mV
Voltage resolution	16 bit per each range
Voltage accuracy	±1mV ±0.05% of setting(gain x1)
Max. scan range	±10V vs. ref. E
Current measurement	
Current range	11 ranges(auto/manual setting)
	2nA~2A
	200pA with gain
Current resolution	16 bit
	60uA, 6uA, 600nA, 60nA, 6nA, 600pA,
	60pA, 6pA, 600fA, 60fA, 6fA
Current accuracy	±0.1% f.s.(gain x1)>200nA

Galvanostat Mode (current control)	
Current control	
Control current range	max. ±2A ± full scale depending on selected range
Current resolution	16 bit 60uA, 6uA, 600nA, 60nA, 6nA, 600pA, 60pA, 6pA, 600fA, 60fA, 6fA
Current accuracy	±0.1% f.s.(gain x1)>200nA
Voltage measurement	
Voltage range	10V, 1V, 100mV
Voltage resolution	16 bit 0.3mV, 30uV, 3uV
Voltage accuracy	±1mV ±0.05% of reading(gain x1)

Electrometer	
Max. input voltage	±10V
Input impedance	2x10 ¹³ Ω 4.5pF
Bandwidth	>22MHz
CMRR	>114dB

EIS(Internal FRA) for System	
Frequency range	10uHz~1MHz
Frequency accuracy	<0.01%
Frequency resolution	5000/decade
Amplitude	0.1mV~5Vrms(Potentiostatic)
	0.1~70% f.s.(Galvanostatic)
Mode	Static EIS:

	0.1~70% f.s.(Galvanostatic)
de	Static EIS:
	Potentiostatic, Galvanostatic,
	Pseudogalvanostatic, OCP
	Dynamic EIS:
	Potentiodynamic, Galvanodynamic
	Fixed frequency impedance:
	Potentiostatic, Galvanostatic,
	Potentiodynamic, Galvanodynamic
	Multisine ElS:
	Potentiostatic, Galvanostatic
	Intermittent PEIS/GEIS

Interfaces for System

Auxiliary port	
Digital output	3(open collector)
Digital input	2(photo coupler)
Auxiliary voltage inputs	3 analog inputs: ±10V
	For measurement of WE vs. CE
	CE vs. RE or other signal
Analog output	1 analog output: ±10V
	For stirrer, MFC, RDE, etc.
Misc. port	
Sig generator output	1 analog output for FRA output or
	waveform generation output
Peripheral communication	I2C to control external devices
Temp. measurement	1 K-type thermocouple input
Zero Resistance Ammeter	2nA ~ 2A ranges

Software	
Max. step per experiment	1000
Shutdown safety limits	Voltage, current, temperature, etc.
Max. sampling rate	2usec or 3usec depending on data point numbe
Min. sampling time	Unlimited
Sampling condition	Time, dv/dt, dl/dt, temperature, etc.

PC Requirement

Operating system	Windows 7/8/10(32bit/64bit OS)
PC specification	Pentium4, RAM 1GB or higher
Display	1600x900 high color or higher
USB	High speed 2.0
-	

General	
Dummy cell	One external dummy cell included
Thermocouple	K-type, 1.5 meter long(option)
Impedance analysis S/W	ZMAN™ software
DC data analysis S/W	IVMAN™ software package
The specifications are subject to change without notice.	

Designed by ZIVELAB www.zivelab.com

WonATech Co., Ltd. 7, Neunganmal 1-gil, Seocho-gu, Seoul, 06801, Korea Phone: +82-2-578-6516 Fax: +82-576-2635 e-mail) sales@wonatech.com website: www.wonatech.com Local Distributor

