Electrochemical Impedance Spectroscopy

May 2012

Designing the Solution for Electrochemistry
Potentiostat/Galvanostat | Battery Cycler | Fuel Cell Test Station
+82-2-578-6516 | sales@wonatech.com
Nomenclature: EIS

- **Electrochemical?**
 - In electrochemistry, everything of interest takes place at the interface between electrode & electrolyte!
 - Controlling REDOX by Potentiostat/galvanostat

- **Impedance?**
 - AC circuit theory describes the response of a circuit to an alternating current or voltage as a function of frequency
 - Impedance is a totally complex resistance encountered when a current flows through a circuit made of resistors, capacitors, or inductors, or any combination of these
 - Ohm’s Law, $V = R \cdot I \rightarrow V = Z \cdot I$ (complex number Z)

- **Spectroscopy?**
 - No Quantum Process
 - Small Perturbation → Response
Excitations used in E’chem Techniques

1. DC
2. Sweep
 - LSV, Tafel, PD, LPR
 - CV
 - Cyclic Polarization
3. Pulse
 - DPV
 - NPV
 - RNPV
 - SWV
4. Sine
 - PEIS, GEIS

Potentiostatic

CA, CC, CP
 Electrochemical Interface and Electrochemical Process
Electrochemical Interface

- **Everything** happens at the interface
- Charge Transfer $\Rightarrow R_{ct}$
 - $R_{ct} \sim 1/i_0$
 - Butler-Volmer Equation
- Diffusion Layer $\Rightarrow W$
- Bulk Electrolyte $\Rightarrow R_{ser}, R_\Omega$
- Double Layer $\Rightarrow C_{dl}$
 - Non-Faradaic Process
Randles’ Circuit
Process of Energy Storage in Electrochemical System

Common Steps

- Ionic charge conduction through electrolyte in pores of active layer
- Electronic charge conduction through conductive part of active layer
- Electrochemical reaction on the interface of active material particles including electron transfer
- Diffusion of ions or neutral species into or out of electrochemical reaction zone.

EIS

\[Z(SOC, SOH, T; \omega) \]

- Discharge Process
- Polarization Curve
- CV

Study of Mechanism

- Evaluation & Diagnosis
 - CO poisoning
 - Water flooding in FC

Performance Simulation

- Arbitrary Load
- DC/AC/Transient
- Power/Energy

Ex) \(R_s, R_{ct}, C_{dl}, W \ ... \)
Impedance Spectra of a Li-ion battery

Impedance Spectra upon cycling

Nyquist Plot vs. level of discharge

CF) Discharge curve upon cycling

Effect of temperature
A. PEMFC Under Dead End
 (H₂O outlet in cathode closed)

B. PEMFC Under CO Poisoning
 (H₂ + 100ppm CO as fuel gas)

Ref. Zahner elektrik-Kronach Impedance Day 2012
Circuit Elements (1)
Basic Circuit Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Equation</th>
<th>Impedance (Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>$E = RI$</td>
<td>$Z = R$</td>
</tr>
<tr>
<td></td>
<td>$I(t) = I_0 e^{j\omega t}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$E = Z \times I$</td>
<td></td>
</tr>
<tr>
<td>Inductor</td>
<td>$E = L \frac{dI}{dt}$</td>
<td>$Z = j\omega L$</td>
</tr>
<tr>
<td></td>
<td>$I(t) = I_0 e^{j\omega t}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$E = Z \times I$</td>
<td></td>
</tr>
<tr>
<td>Capacitor</td>
<td>$E = \frac{Q}{C} = \frac{1}{C} \int I dt$</td>
<td>$Z = -j \frac{1}{\omega C}$</td>
</tr>
<tr>
<td></td>
<td>$I(t) = I_0 e^{j\omega t}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$E = Z \times I$</td>
<td></td>
</tr>
</tbody>
</table>
AC Current, Voltage, and Impedance

Voltage \[E(\omega) = E_0 \cos(\omega t) \]
\[= E_0 e^{j\omega t}, \text{ where } j = \sqrt{-1} \text{ and } \omega = 2\pi f \]

Current \[I(\omega) = I_0 \cos(\omega t - \varphi) \]
\[= I_0 e^{j(\omega t - \varphi)} \]

Impedance \[Z(\omega) = \frac{E(\omega)}{I(\omega)} \quad \text{← Ohm’s Law} \]
\[= Z_0(\omega)e^{j\varphi(\omega)}, \text{ where } Z_0 = \frac{E_0}{I_0} \]
\[= Z_0(\cos \varphi + j \sin \varphi) \quad \rightarrow \text{Modulus & Phase (Bode Plot)} \]
\[= Z' + jZ'' \]
\[\rightarrow \text{Real & Imaginary part (Nyquist Plot)} \]
Presentation of Impedance Spectrum

- **Nyquist Plot**
 - Vectors of length $|Z|$
 - Individual charge transfer processes are resolvable.
 - Frequency is not shown.
 - Small Z can be hidden by large Z.

- **Bode Plot**
 - C may be determined graphically.
 - Small Zs in presence of large Zs are usually easy to identify.
Basic Circuit Elements

Resistor

\[Z = R \]

Inductor

\[Z = j\omega L \]

Capacitor

\[Z = \frac{1}{j\omega C} = -j\frac{1}{\omega C} \]
Combinations of Elements

- Serial Combination
 \[Z = Z_1 + Z_2 \]

- Parallel Combination
 \[\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} \]
Combinations of Circuit Elements

\[R-C \]
\[Z = R + \frac{1}{j\omega C} \]

\[R|C \]
\[\frac{1}{Z} = \frac{1}{R} + j\omega C \]

\[R-R|C \]
\[Z = R_s + \frac{1}{\frac{1}{R} + j\omega C} \]
\[Z = R_s + \frac{1}{\frac{1}{R} + j\omega C} = \left[R_s + \frac{R}{1 + \omega^2 R^2 C^2} \right] - j \left[\frac{R \times \omega RC}{1 + \omega^2 R^2 C^2} \right] \]

\[\equiv Z' + jZ'' \]

1. \(\omega \to 0, \ Z = R_s + R \)
2. \(\omega \to \infty, \ Z = R_s \)
3. \(Z' = R_s + \frac{R}{1 + \omega^2 R^2 C^2}, \quad Z'' = -\frac{R \times \omega RC}{1 + \omega^2 R^2 C^2} \quad \therefore \left\{ Z - (R_s + \frac{R}{2}) \right\}^2 + Z''^2 = \left(\frac{R}{2} \right)^2 \)
4. \(Z' = R_s + \frac{R}{2} \Rightarrow \frac{R \times \omega_{\max} RC}{1 + \omega_{\max}^2 R^2 C^2} = \frac{R}{2} \)

\[\therefore \omega_{\max} = \frac{1}{RC} \quad \Rightarrow \quad -Z'' = -Z''_{\max}, \quad \text{phase} = \varphi_{\min} \]
\[R_S - R|C \]

\[\omega_{\text{max}} = 2\pi f_{\text{max}} = \frac{1}{RC} \]

\[\omega \rightarrow \infty \]
\[\omega \rightarrow 0 \]

\[-Z'' \]

\[Z' \]

\[\text{Phase } \phi \]

\[\log \omega \]
Coating Capacitance

- Ideal Coating
 \[C_{coat} = \varepsilon \frac{A}{d} \]

- Imperfect Coating
Uniqueness of Models

- There is not a unique equivalent circuit that describes a spectrum.
- Measuring Z is simple and easy, but analyzing it is difficult.
- Physically relevant model is important.
 - It can be tested by altering physical parameters.
- Be cautious in handling empirical models even if you get a good looking fit.
 - Use the fewest elements
 - Test it by T-test
Disadvantages of EIS

• Ambiguities in interpretation
 – All cells have intrinsically distributed properties
 – Ideal circuit elements may be inadequate to describe real electrical response
 – Use of distributed elements (e.g. CPE)

• There is not a unique equivalent circuit describes measured impedance spectrum
Advantages of EIS

- Relatively simple electrical measurement
- But analysis of complex material variables: mass transport, rates of chemical reactions, corrosion...
- Predictable aspects of the performance of chemical sensors and fuel cells
- Providing empirical quality control procedure

![Diagram showing the process of Electrochemical System EIS Experiment Ze(ω) Theory Physically Relevant Model Mathematical Model Ztheory(ω) Empirical Circuit Zem(ω) Curve Fitting System Characterization.](Modified figure shown in page 10, IS(2nd ed.))
Circuit Elements and Electrochemical Meanings
Physical Electrochemistry & Equivalent Circuit Elements

- Electrolyte Resistance
 - 3 electrode: between WE and RE
 - 2 electrode: all series R in the cell are measured incl. R of contacts, electrodes, solution, and battery separators
 - Depends on ionic concentration, type of ions, temperature, and geometry
• **Charge Transfer Resistance**
 – Echem charge transfer reactions are generally modeled as resistances.
 – When an EIS spectrum is measured on a corrosion cell at E_{corr}, the resistance at low-frequency is identical to the polarization resistance.

For a one step, multi-electron process, $O + ne \rightleftharpoons R$ small overpotential is given by

$$\eta = \frac{RT}{nF} \left[\frac{C_O(0,t)}{C^*_O} - \frac{C_R(0,t)}{C^*_R} + \frac{i}{i_o} \right]$$

$$R_{ct} = \frac{\partial E}{\partial i} \bigg|_{C_O(0,t),C_R(0,t)}$$

$$= \frac{RT}{nFi_0}$$
Double Layer Capacitance

- A electrical double layer forms as ions from the solution “stick on” the electrode. There is an Å-wide separation between charge in the electrode and ionic charges in the solution.
- Charges separated by an insulator form a capacity. On a bare metal, estimate 20 to 40 μF of C for every cm² of electrode area.
- Depends on electrode potential, temperature, ionic concentrations, types of ions, oxide layers, electrode roughness, impurity adsorption, etc.

From A. J. Bard & L. R. Faulkner, “Electrochemical Methods”
Physical Electrochemistry
& Equivalent Circuit Elements

- Constant Phase Element (CPE)
 - The CPE is basically an imperfect capacitor.
 - It’s phase shift is less than 90°.

\[Z_{CPE} = \frac{1}{A \times (j\omega)^\alpha} \]

- Unlike C, a CPE has 2 parameters
 - \(\alpha \) is generally between 0.9 and 1.0
 - A is similar to C
- Possible Explanations
 - Surface roughness → Fractal Dimension, \(D=1+1/\alpha \)
 - Distribution of reaction rates on a surface
 - Varying thickness or composition of a coating
Physical Electrochemistry & Equivalent Circuit Elements

- **Diffusion**
 - Diffusion processes can create an impedance, which is small at high frequency and increases as frequency decreases.
 - **Warburg Impedance**
 - Warburg looks like a special CPE with $A=1/s$ and $\alpha=1/2$.
 - However, remember that Warburg is derived from electrochemical kinetics. Parameters you obtain with Warburg have physical meanings. It is only partly true for CPE.
 - You can get a good fit, but how to interpret the resulting parameters?

\[
Z_W = \frac{\sigma}{\sqrt{\omega}} (1 - j) = \frac{\sigma}{\sqrt{\omega}} e^{-\frac{\pi}{4} j} = \frac{\sigma}{(j \omega)^{1/2}}
\]

\[
\sigma = \frac{RT}{n^2 F^2 A \sqrt{2}} \left(\frac{1}{D_o^{1/2} C_o^*} + \frac{1}{D_R^{1/2} C_R^*} \right)
\]

For a one-step, multi-electron process.
Physical Electrochemistry & Equivalent Circuit Elements

• Diffusion
 – Nernstian & Finite Diffusion Impedance

\[Z = \frac{\sigma}{\sqrt{\omega}} (1 - j) \tanh(\delta \sqrt{\frac{j \omega}{D}}) \]
\[Z = \frac{\sigma}{\sqrt{\omega}} (1 - j) \coth(\delta \sqrt{\frac{j \omega}{D}}) \]

 – Homogeneous reaction (Gerischer)

\[Z = \frac{1}{A \sqrt{B} + j \omega} \]

 – Spherical Diffusion

\[Z = \frac{1}{A \sqrt{B} + \sqrt{j \omega}} \]
Physical Electrochemistry & Equivalent Circuit Elements

- Diffusion ← Transmission Line Model

Warburg

\[Z = \frac{\sigma}{\sqrt{\omega}}(1 - j) \]

Nernstian Impedance: Diffusion by Constant Concentration

\[Z = \frac{\sigma}{\sqrt{\omega}}(1 - j) \tanh(\delta \sqrt{j\omega/D}) \]

Finite Diffusion Impedance: Diffusion by Phase Boundary

\[Z = \frac{\sigma}{\sqrt{\omega}}(1 - j) \coth(\delta \sqrt{j\omega/D}) \]
Nernstian Impedance

$R: 100\, \Omega$

$C: 0.001\, F$
Nernstian Impedance

\[R: 100\Omega \]
\[C: 0.001F \]
Finite Diffusion Impedance

R: 100Ω
C: 0.001F
Finite Diffusion Impedance

R: 100Ω
C: 0.001F
Validation of Impedance Data
Kramers-Kronig Relation
Validation of Impedance Data

• Ideal impedance data must fulfill:
 – **Causality**: The output must be exclusively a result of the input
 – **Linearity**: The response must be a linear fn. of the perturbation
 – **Stability**: The system must not be changing during measurement
 → a serious problem for corroding systems
 – **Finite-Valued**: Impedance must be finite value at any frequency

• Kramers-Kronig Relation:
 – Validation Test
 – Low Frequency Extrapolation
 \[Z'(\omega) = Z'(\infty) + \frac{2}{\pi} \int_{0}^{\infty} \frac{xZ''(x) - \omega Z''(\omega)}{x^2 - \omega^2} dx \]
 – The integration range includes the frequencies zero and infinity
 – Note pure capacitor cannot be calculated

 a. \(Z'' \rightarrow Z' \)
 b. \(Z' \rightarrow Z'' \)
Electrochemistry: A Linear System?

- Circuit theory is simplified when the system is “linear”.
- Z in a linear system is independent of excitation amplitude. The response of a linear system is always at the excitation frequency (no harmonics are generated).
- Look at a small enough region of a current versus voltage curve and it becomes linear.
- If the excitation is too big, harmonics are generated and EIS modeling does not work.

E’chem: A Stationary System?

• Measuring EIS spectrum takes time (often many hours).
• The sample can change during the time the spectrum is recorded.
• If this happens, modeling results may be wildly inaccurate.
• To shorten the measuring time of impedance spectrum, use FFT EIS method.

Non-Stationary Conditions result in non-stationary spectra!
K-K Relation

Ref. Scribner Associates Inc. – ZView K-K Transform Tutorial
Validation of Impedance Data

Z-HIT
Limitation of K-K Relation

- The integration range includes the frequencies zero and infinity
- $|Z|$ and Phase are measured independently with different accuracy and sensitivity, but in theory, they are correlated with each other.
Heating NTC, PTC

Phase is more stable than |Z|!

Ref. Zahner elektrik-Kronach Impedance Day 2012
Z-HIT Approximation

\[\ln|Z(\omega_0)| \approx \text{const.} + \frac{2}{\pi} \int_{\omega_s}^{\omega_0} \varphi(\omega) d\ln \omega + \gamma \cdot \frac{d\varphi(\omega_0)}{d\ln \omega} \]

Local relationship between impedance and phase

=> Not affected by the limited bandwidth problem

=> Reliable detection of artifacts and instationarities (drift)

=> **Reconstruction (!!!)** of causal spectra

=> Reliable interpretation of spectra

Ref. Kronach Impedance Day 2012
Ex. Spectrum of a fuel cell under load

1. Z-HIT
2. FIT

Ref. Kronach Impedance Day 2012
Ex. Fuel cell under CO poisoning

Raw data

Refined data

Ref. Zahner elektrik- Kronach Impedance Day 2012
Other Methods to Measure EIS
Multi-Sine Wave Method

In Galvanostatic EIS,
Freq ↓ ⇒ |Z|↑ ⇒ |V|↑: Linear Region?
⇒ “Pseudo-Galvanostatic EIS”

Multi-Sine Method
Time Resolved EIS

1. Real Time-Drift Compensation

An EIS recorded at the PEMFC with **flooded cathode**, after 4450s of “dead end” operation at 2A. After pp501-505, IS (2nd ed.) & Schiller
Inductive Loop at High Frequency

• The effects of inductances are often seen at the high frequencies.

• The value of inductor is very small, however, this can be important if the electrode impedance is low.

• Possible Causes
 – Actual physical inductance of loop or coil of wire between electrode and potentiostat
 – Self inductance of the electrode itself: even a straight piece of rod has some self inductance ~ several nH
 – Some cylinder-type batteries also shows this effect ~ uH
 – Instrumental artifacts, notably capacitance associated with the current measuring resistor, however. Potentiostat manufacturers may have already made corrections for this effect.

\[E = L \frac{dI}{dt} \rightarrow Z_L = j\omega L \]
Mutual Induction - Twisting Cables

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arbitrary</td>
<td>CE/RE & WE/WS</td>
<td>CE/WS & WE/RE</td>
<td>CE/WE & RE/WS</td>
</tr>
</tbody>
</table>

Cell: 20 mΩ planar resistor

Ref. Zahner elektrik-Kronach Impedance Day 2012
Galvanostatic EIS is Better for Low Z

• Potentiostatic Mode
 – Vac is 1 mV Minimum!
 – $1 \text{ mV}_{\text{rms}} = 1.414 \text{ A}_{\text{rms}} \times Z$
 – $Z_{\text{min}} = 707 \mu\Omega$
 – These are Absolute Minimum Z Values!
 • Limitation is APPLIED E
 • Measured E is still Accurate!

• Galvanostatic Mode
 – Can Measure Smaller E Values! ~Microvolts
 – CMR of electrometer may limit the absolute minimum Z Values! -> 5 uΩ
 – Refer to “Shorted Lead Test”
How to Extract Model Parameters

- Building equivalent circuit model
 - Physically relevant model
 - Each component is postulated to come from a physical process in the EChem cell based on knowledge of the cell’s physical characteristics.
 - Empirical model

- Complex Nonlinear Least Square (CNLS) Fitting Algorithm
 - is used to find the model parameters that cause the best agreement between a model’s impedance spectrum and a measured spectrum.
 - starts with initial estimates of model parameters.
 - Iterations continue until the goodness of fit exceeds an acceptance criterion, or until the number of iterations reaches a limit.
 - Please check the change of χ^2 after each iteration.
 - Sometimes, CNLS algorithm cannot converge on a useful fit because of
 - An incorrect model
 - Poor estimates for the initial values
 - Noise and etc.
 - Don’t care if the fit looks poor over a small section of the spectrum.